Francis Bacon (1561 - 1626) was born and died in London, England. At present his legacy as a philosopher is ambivalent; for two centuries after his death, however, he was considered to be the originator of the modern scientific method. He spent the better part of his life involved in law and politics, but he had a great interest in philosophy, which at the time involved the study not only of metaphysics and moral philosophy, as now, but also the natural world, the study of which is now the province of physics, biology, etc.

Early on in his life Bacon came to the view that the study of natural philosophy as it was practiced in his day was essentially bankrupt. At the time the two major methods of natural philosophical inquiry were the scholastic and the alchemical: the scholastic approach was based in the study of ancient texts and attempted to explain the natural world through contemplation and argument; the alchemical approach was based in a tradition stretching back to the ancient period of working with elements to achieve various aims, the most famous being the conversion of base elements into gold. Bacon believed that neither approach had either achieved a true exploration of nature or had
yielded results that adequately benefitted mankind. He envisioned an entirely new system of natural philosophy which was based first on the observation of phenomena, then moved on to more limited empirical propositions and eventually arrived at general theoretical axioms.

Bacon's contribution to the sciences was his insistence on the primary importance of careful observation in the sciences (i.e. induction), his zeal for the exploration of the natural world rather than simple explanation, and his interest in using science for practical purposes. The text from which this leaf was taken was written as both an explication of the importance of scientific inquiry to humans, and an attempt to address the current state of knowledge, with suggestions as to how scientific inquiry might best be undertaken. The leaf we have is characteristic of Bacon: he writes in polished Latin prose (the international language of educated people in his period) exhibiting a deep familiarity with ancient authors; he does not shy away from criticism and appraisal, freely pointing out flaws in a given scientific approach; and he follows every criticism with ample suggestions as to how scientific knowledge might best be obtained.

The first paragraph of the leaf deals with the role of doubt in physical inquiry. Bacon's argument is that doubt or skepticism, while valuable in moderation, can be abused if doubts are held needlessly and even obvious truths are called into doubt (this criticism is likely directed at scholastic schools of philosophy). His solution to this problem is the creation of a list which would record points of doubt and contention in scientific inquiry, and would therefore act as an authority when a given point of skepticism had been dealt with and would no longer be allowed into argument.
The second paragraph of the leaf highlights two other important aspects of Bacon's thought, namely the importance of collaboration and cooperation in the sciences, and the value of natural history. Bacon believed that a synthesis of ideas about nature taken from ancient authors and other schools of thought would be enormously useful to the development of scientific knowledge. Rather than discarding the observations of an entire school of thought because one part of it appeared to be untenable, Bacon argued that the partial truths of each school could be usefully combined and would thus bear scientific fruit.

The final paragraph of the leaf is the start of a new section dealing with metaphysics. Bacon begins with a defense of the search for forms as a primary goal of scientific inquiry, drawing a simple but illuminating contrast between his approach and that of Plato. Plato recognized the importance of forms, but believed that the ideal form did not exist in nature and could not be apprehended through the observation of nature. Bacon retains the belief that forms can be apprehended and are the main object of scientific inquiry, but argues that they can only be apprehended through the study of the natural world (this provides a nice illustration of Bacon's belief that general axioms could be arrived at by starting with empirical observation and moving on from observation to the creation of theories).